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Abstract 

Traditional lightning models used for rendering images typically assume 
that the light exits at the same position that it goes in. This is not true 
especially in case of translucent materials. This paper introduces an 
efficient BSSRDF (bidirectional surface scattering distribution function) 
model developed by Henrik Wann Jensen that takes this physical 
phenomenon into account. Paper explains in detail how BSSRDF model is 
incorporated to standard Monte Carlo path tracing algorithm and gives 
intuitive explanations to complex mathematical formulas caused by physical 
phenomenon. 

1 INTRODUCTION 

This paper concentrates on subsurface light transport that happens on translucent 
materials. Translucency is a material phenomenon where light travels through an 
object’s surface rather than simply bouncing off the surface. Most non-metal surfaces 
contain a certain degree of translucency. A good example of translucent material is wax, 
see figure 1. 

Figure 1.  An example of translucent material, a glowing candle 
(http://www.neilblevins.com/cg_education/tut28/tut28.htm 1.4.2002). 
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When light encounters an obstacle on its path light is either absorbed or scattered. 
Obstacle can be a surface of different material or medium. It can also be a small particle 
or a molecule in a volumetric medium such as piece of fog or flame. The calculations 
needed for generating the illumination of light in volumetric medium become 
computationally heavy. Thereby it is not efficient to use a full-blown volume model for 
translucent surfaces even though subsurface scattering is a volumetric phenomenon. 
BSSRDF model tackles this problem, relying strongly on the theory of light transport in 
volumetric medium. 

A simple method for calculating the scattering of light on a surface is to assume the 
surface to be a Lambertian, or in other words an ideal diffuse reflector. With Lambertian 
surfaces the reflected direction is assumed perfectly random and the radiance constant in 
all directions. See figure 2 (a). Quite much research has focused on developing models 
for the more general, bidirectional reflectance distribution function (BRDF). A surface’s 
BRDF specifies how much of the light incident from any one direction is emitted in any 
second direction. BRDF model, originally introduced by Nicodemus & al. (1977), 
assumes that light striking at surface location is reflected at the same surface location. 
See figure 2 (b). BRDFs can be simple, such as the Lambertian model that causes a 
constant BRDF or complex, such as Cook-Torrance model. Assuming the light to exit at 
the same location as it entered works well for most materials, but not for translucent 
materials. See figure 3. 

Figure 2. Scattering of light in (a) a Lambertian surface (b) a BRDF (c) 
BSSRDF(Jensen 2001a). 

Figure 3.  Image of a human face rendered with (a) BRDF (b) BSSRDF model 
(http://graphics.stanford.edu/~henrik/ 1.4.2002). 

 
(b) (c) (a) 

(b)(a)
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When a beam of light is scattered by a material it normally enters the material and then 
scatters around before leaving the surface at a different location. See figures 2 (c) and 4. 
Bidirectional surface scattering distribution function (BSSRDF) developed by Jensen 
(2001a) describes this behavior correctly without assuming the light beam to leave the 
surface at a same location that it went in. Actually BRDF approximation is just a special 
case of BSSRDF (Jensen 2001a). 

Figure 4.  Light interaction with skin 
(http://www.neilblevins.com/cg_education/tut28/tut28.htm 1.4.2002). 

Chapter 2 introduces the basic principles and equations of light scattering in general 
participating media (volume). Chapter 3 covers BSSRDF and describes its multi and 
single scattering components. Chapter 4 is dedicated to rendering BSSRDF with Monte 
Carlo path tracing. 

2 LIGHT SCATTERING IN PARTICIPATING MEDIA 

To perform a full simulation of subsurface scattering, it is necessary to solve the same 
basic equations as in the case of general participating media. However, in case of 
subsurface scattering quite many simplifications can be made. When a photon enters a 
participating media it can either continue unaffected through the medium or it can 
interact at a given location. When a photon interacts with a medium one of two things 
can happen: photon gets either scattered or absorbed. The probability of a photon being 
either scattered or absorbed as it moves through the medium is given by the scattering 
coefficient, σs, and the absorption coefficient σa. 
 
The combined loss in radiance L in the direction ω due to both out-scattering and 
absorption is (Jensen 2001b): 
 

         (1) 
 
where σt = σs + σa. 
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As we move through the media there will also be a gain in radiance due to in scattering 
of light. This is given by following equation: 
 

         (2) 
 
where the incident radiance Li is integrated over all directions of the sphere Ω4π. Phase 
function p(x, ω’, ω) is a material property that describes the distribution of the scattered 
light. Quite often the phase function depends only on the angle θ  between the incoming 
ray ω’ and the scattered ray  ω, and can be written as p(θ) (Jensen 2001b, p. 115). Figure 
5 illustrates Henyey-Greenstein phase functions p(θ). In case of isotropic scattering the 
photon is scattered in random direction without a history where it came from. For 
isotropic scattering the phase function is constant and looks like figure 5 (a). A useful 
property calculated of phase function is the mean cosine, g, of scattering direction: 
 

 

Figure 5. The Henyey-Greenstein phase function (a) g = 0, (b) g = 0.9. 
 
There also can be a gain in radiance due to emission Le from the medium, e.g. because 
of flames: 
 

         (3) 
 
By combining equations (1), (2) and (3) it is possible to find the total change in radiance 
per unit distance. After integrating the both sides of combined equation for a segment of 
length s the commonly known volume rendering equation can be formed: 
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         (4) 
 
where the optical depth τ(x, x’) is given by: 
 

         (5) 
 
Analytical solutions to volume rendering equation can found only on very few cases. 
Hence in general, volume rendering equation has to be solved numerically. A common 
scheme for solving numerically volume rendering equation is ray-marching, see details 
in Jensen  (2001b, p. 119-121). 

3 SURFACE SCATTERING 

The most advanced and accurate, yet computationally feasible model for calculating 
subsurface scattering is the BSSRDF method introduced by Jensen (2001a). This 
method relies on the observation that the scattering of light is formed of two 
components: single and multiple scattering. Physically single scattering is interpreted as 
illumination from a single scattering event and multiple scattering as illumination due to 
integer number of scattering events. The solution for single scattering will be exact 
while multiple scattering is solved with a dipole point source approximation. For 
example, human skin’s multiple scattering term is very high, whereas its single 
scattering term is very small. A substance such as marble or wax has a much larger 
contribution from the single scattering effect, and consequently less contribution from 
the diffusion (multiple) component. Figure 6 illustrates single and multiple scattering 
components in case of a leaf. The leaf is illuminated from behind with a laser pointer. 
The strong, focused center, which is the laser entering one side of the leaf and exiting 
through the other, much like light travels through a piece of glass and comes out at a 
different angle due to refraction, is the single scattering component. The soft glow 
surrounding the leaf is the multiscattering component. 
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Figure 6.  Single and multiple scattering 
(http://www.neilblevins.com/cg_education/tut28/tut28.htm 1.4.2002). 

 
The BSSRDF, S, relates the differential reflected (outgoing) radiance dLr(x, ω) at the 
point x in direction ω, to the incident flux Φi(x’, ω’) at the point x’ from direction ω’ 
(Jensen 2001a): 

         (6) 

As can be seen S is a function of both incoming position and direction as well as the 
outgoing position and direction. As mentioned BSSRDF consists of two components. 
Hence following is true: 

S = S(1) + Sd 

(7) 

where S(1) is the single scattering and Sd is the diffuse approximation term. 

3.1 Diffuse approximation 

The formulation of diffuse approximation is based on the observation that the light 
distribution in highly scattering media tends to be isotropic. This is true even if the 
initial light source and phase function are highly anisotropic (Jensen 2001a). Hence in 
diffuse approximation the phase function p(x, ω’, ω) is constant. In this situation the 
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radiance L can be approximated by a two-term expansion: 
 

         (8) 
 
where scalar and vector irradiances φ(x) and E(x), that describe the exiting radiant flux 
per differential area are: 
 

 
By combining equation (8) and the volume rendering equation (4) it is possible to form 
the classic diffusion equation (for details see Jensen (2001a)): 
 

         (9) 
 
where Q0 and Q1 are 0th and 1st order source terms. The diffusion constant D is defined 
in terms of scattering and absorption coefficients, σs and σa, and the mean cosine, g, of 
scattering angle: 
 

 
Diffusion equation (9) needs to be solved for exiting scalar irradiance φ in order to find 
the diffusion term of BSSRDF. There is an exact, analytical solution for diffusion 
equation in case of an infinite medium. However in the current case, which is the case of 
finite medium the diffusion equation does not in general have an analytical solution. 
Jensen (2001a) tackled the problem by using a method introduced by Eason & al. (1972) 
and Farell & al. (1992). In this method the incoming ray is transformed into a dipole 
source. That is, two light sources are positioned near the surface in such way that the 
required boundary conditions are met. One, positive, real light source is located beneath 
the surface at the distance zr and the other, negative, virtual light source above it at the 
distance zv. See figure 7. 
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Figure 7. Dipole source model for solving the diffuse approximation (Jensen 2001a). 
 
Jensen (2001a) proposes to position the real and virtual light sources straight below and 
above x’ at following distances: 
 

 
where 
 

 
Fdr represents a rational approximation of diffuse reflectance. η in Fdr is the relative 
index of refraction between the two mediums. The resulting solution to diffusion 
equation for scalar irradiance is: 
 

         (10) 
 
where dr is the distance from x to the real light source and dv from x to the virtual light 
source: 
 

 
The diffuse contribution of BSSRDF due to subsurface scattering is equal to the radiant 
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exitance (flux leaving the surface) divided by the incident flux (Jensen 2001a): 
 

         (11) 
 
However Rd does not contain the contribution from direct reflection of the surface 
(specular term). Specular reflection is taken into account with Fresnel’s model (for 
details see Jensen (2001b, p. 23-24)). The Fresnel reflection needs to be taken into 
account at the boundary of both incoming light and the outgoing radiance (Jensen 
2001a). Hence the final multiple scattering component Sd of the BSSRDF is: 
 

         (12) 
 
Chapter 4 explains the usage of equation (12) in practice. 

3.2 Single Scattering 

Physically single scattering can be interpreted as illumination from a single scattering 
event. Mathematically this means the first order solution to volume rendering equation 
(4). Single scattering occurs only when the refracted incoming and outgoing rays 
intersect as shown in figure 8. According to Jensen (2001a) the total outgoing radiance 
L(1) due to single scattering is computed as an integral over path length s along the 
refracted outgoing ray: 
 

         (13) 
where 
 

(14) 
G is an a geometry factor and for flat surface its value is: 
 

         (15) 

R x x D
n x

d

d
e

d
z d

e
d

d
s

i

s a
tr r

d

t r
v tr r

d

t v

tr r tr v

( ' )
( )

' /
( )

'
( )

'

− = −
⋅ ∇

= + + +










− −

φ

σ σ
π

σ
σ

σ
σ

σ σ

Φ

4
1 13 3

S x x F R x x Fd t d t( ' , ', , ) ( , ') ( ' ) ( , )ω ω
π

η ω η ω= −
1

∫ ∫

∫ ∫

Ω

Ω

∞

′⋅′′

==

A
i

i
s

s

xdAdnxLxxS

ddsxLexFpxxL tc

)'()')(,'(),,,'(

')','(),','()(),(

2

2

)1(

0

)1(

π

π

ωωωωω

ωωωωσω σ

F F F
x G x

t t

tc t t

= ′
= + ′





( , ) ( , )
( ) ( )
η ω η ω

σ σ σ

′⋅′

⋅′
=

ω

ω

n

n
G



 

10 

 

Figure 8. Single scattering illustration (Jensen 2001a). 
 
In practice equation (13) has only theoretical meaning since the second and third lines of 
the equation define implicitly the single scattering component S(1) of BSSRDF. Chapter 
4 and explains intuitively the formation the practical equation for single scattering term 
used in rendering instead of equation (13). 

4 RENDERING USING MONTE CARLO PATH TRACING AND BSSRDF 

Calculating the illumination using BSSRDF requires evaluation of integral equations, as 
seen in previous sections. These integration problems can be handled by tracing a 
random ray within the integration domain multiple times and then averaging the result to 
estimate the value of integral. This concept is generally known as Monte Carlo 
integration. There is a lot of literature that explain the Monte Carlo concept, for basics 
see for example Hearn and Baker (1997, p. 624). When Monte Carlo integration is 
incorporated to standard ray tracing algorithm the well-known path tracing algorithm is 
formed. Jensen (2001b, p. 33-50) covers nicely the standard ray and path tracing 
algorithms. In this paper the basics of well-known tracing algorithms are not covered, 
instead the incorporation of BSSRDF to path tracing is explained in detail. 
 
There is a general difference in BSSRDF path tracing algorithm compared to path 
tracing algorithms used with traditional lightning models (based on BRDFs). That is, in 
case of traditional models at each ray-object intersection only the direction of a shadow 
ray is sampled, while in case BSSRDF both the direction and the start point of a shadow 
ray are sampled. See figure 9. 
 

Figure 9. (a) Sampling with traditional lightning model. Only direction is sampled. (b) 
Sampling with BSSRDF. Both direction and start point are sampled. (Jensen 
2001a) 

 



 

11 

It is convenient to separate the sampling of diffuse and single scattering terms since, 
diffuse term samples are distributed around the exit point x and single scattering term 
samples must be along the refracted outgoing ray. 
 
Radiance Ld due to multiple scattering is evaluated using BSSRDF Sd defined by 
equation (12). Jensen (2001a) proposes diffuse term to be multiplied by exponential 
falloff. In order to obtain the outgoing radiance Sd needs to be integrated over the 
surface area and over all incoming directions. Because of Monte Carlo scheme the Sd is 
constant at one sample event. Incident illumination is assumed to be constant at one 
sample event as well. Hence the radiance due to multiple scattering becomes following: 
 

         (16) 
 
where πd2/4 is due to the integration over the surface. d is a random distance measured 
from x that is sampled for every ray. 
 
When using Monte Carlo path tracing radiance L(1) due to single scattering event can be 
calculated using following equation: 
 

         (17) 

where so’ is a sampled random distance along the primary ray and si’ is the distance 
along the shadow ray as illustrated in figure 10: 
 

         (18) 
 
ξ is a uniformly distributed number between 0 and 1. si’ is an approximation based on 
the Snell’s law for the distance that incoming sample ray moves through the material. 
An approximation is used because for arbitrary geometry it is difficult to find the point 
where the shadow ray is refracted. 
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Figure 10. Illustration of the distances used in the evaluation of single scattering. 
 
Intuitively equation (17) can be interpreted as follows. The incoming radiance L´ is 
attenuated twice. The first attenuation happens when the ray comes in and moves 
through the material (distance si’). The second attenuation happens after the scattering 
event when the ray moves through the material to get out (distance so’). Exponential 
terms in equation (17) describe these attenuations. The division term in front of the 
exponential terms consists of a Fresnel term and the phase function. Those describe in 
what direction the scattering happens. 
 
The BSSRDF path tracing algorithm that takes one shadow ray into account, as 
suggested in Jensen (2001b, p. 39), is described below as pseudo code. Note that figure 
10 supports the algorithm description. 
 
render image using path tracing 

for each pixel 
global color = 0 
for each sample 
pick ray from observer through random position in pixel 
global color = global color + trace(ray) 

pixel color = global color/#samples 
 

trace(ray) 
find nearest intersection point with scene 
global color = shade single scattering(point) 
global color = color + shade multiple scattering(point) 
return global color 
 

S

Shadow
ray

Primary ray

si’
si so’

observer
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shade single scattering(point) 
color = 0 
generate random sample distance s0´ 
calculate point S for refracted primary ray 
color = trace intersection color with other object(randomly 

reflected shadow ray from point S) 
calculate shadow ray - surface intersection point  
calculate distance si´ 
color = calculate single scattering(color, so´, si´) 
return color 

 
shade multiple scattering(point) 

color = 0 
for each light source 

test visibility of random position on light source 
if visible 

color = color + light source color  
color = color + trace intersection color with other 

objects(randomly reflected shadow ray) 
generate random sample distance d 
color = calculate multiple scattering(color, d) 
return color 

 
To get a decent accuracy for the Monte Carlo integration enough samples need to be 
used. If too few samples are used the final image becomes noisy, see figure 11. 
Typically the simulation is carried out with at least 100 samples per pixel (Jensen 
2001b, p. 30). 
 

Figure 11.  Too few samples can be seen as noise in the final rendering 
(http://www.cc.gatech.edu/gvu/people/Phd/Charles.Patterson/research/gsii/g
sii.html 14.4.2002).
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